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INTRODUCTION
Background and Preliminary Data

Ovarian cancer remains the 5™ most frequent cause of death from cancer in women.
Indeed, the current cure rate for ovarian cancer is under 40%, not substantially different
from that in the 1950s. This abysmal prognosis occurs, in most part, due to ovarian
cancer being diagnosed at a late stage where current therapies are ineffective.
Unfortunately more than 75% of patients are diagnosed when the disease has spread
beyond the pelvis. Thus a method to detect ovarian cancer at an early curable stage
has the potential to provide an immediate and major impact on this devastating disease.
This is particularly important for individuals at high risk either because of a strong family
history or proven abnormalities in BRCA1 or BRCA2.

The identification of secreted molecules, which contribute to the pathophysiology of
ovarian cancer, provides a major opportunity to identify markers that could contribute to
early diagnosis. We have demonstrated that the most potent growth factor activity in
ascites of ovarian cancer patients consists of multiple forms of lysophosphatidic acid
(LPA). LPA increases proliferation, prevents apoptosis and anoikis, increases
invasiveness, decreases sensitivity to cisplatin (the most effective drug in ovarian
cancer), and increases production and activity of multiple growth factors, proteases and
mediators of angiogenesis. Thus LPA contributes to the pathophysiology of ovarian
cancer. We and others have subsequently demonstrated that multiple additional
bioactive lysophospholipids, including lysophosphatidylcholine (LPC),
sphingosylphosphorylcholine (SPC), sphingosine 1 phosphate (S1P) and
lysophosphatidylserine (LPS) exhibit pleiomorphic effects on ovarian cancer cells.

Ascites from ovarian cancer patients contains high levels of lysophospholipids
including multiple forms of LPA, lysophosphatidylinositol (LP!), LPC, SPC and S1P.
Reports from our and other laboratories indicate that plasma and sera from ovarian
cancer patients contain aberrant levels of these lysophospholipids. This suggests that
an efficient method to determine levels of lysophopholipids in serum or plasma could
provide an effective method to screen for ovarian cancer.

Over 500 species of lysophospholipids are present in plasma and serum. Currently,
lysophospholipids are quantified by lipid extraction of a serum sample followed by Mass
spectrometry (MS). While MS analysis is highly accurate, the methodology has limited
throughput for large-scale screening of patient samples. Further, the need to use
organic solvents to prepare specimens for MS limits the quantitation and the
applicability of the method. Surface-enhanced laser desorption and ionization time of
flight (SELDI tof) mass spectroscopy analyses of “markers” diagnostic of ovarian cancer
have identified a number of candidates with mass/charge ratios of under1000,
suggestive that these could be lysophospholipids rather than peptides. Identification of
these markers required the global unbiased analysis of many different molecules in
serum combined with powerful algorithms designed to identify patterns indicative of the
presence of cancer.

We propose to apply two novel technologies to the development of a high
through-put technology suitable for screening for ovarian cancer in high and low risk
women. The first of these is a novel approach to the development of antibodies to




specific phospholipids and lysophospholipids and the second of these is SELDI tof
mass spectroscopy. These two technologies will be merged with powerful bioinformatics
tools to develop heuristic algorithms capable of detecting ovarian cancer at an early,
curable stage. This approach will benefit from the expertise of the Mills laboratory (LPA

screening, SELDI tof) with that of the Prestwich laboratory (lipid synthesis and antibody
development).

To develop efficient methods for analysis of lysophospholipids in ovarian cancer
patients, we will:

1. Assess the efficacy of novel LPA/PA lipid antibodies developed by our
group in capture and analysis of LPA/PA directly in serum and plasma
using SELDI-tof

2. Determine whether non-specific matrices (hydrophobic C16, anionic
SAX2) can be used to directly determine phospholipid and
lysophospholipid levels using SELDI-tof

3. Develop additional anti lysophospholipid antibodies and determine their
utility in analysis in Seldi-tof

Significance: Over 75% of ovarian cancer patients are diagnosed when the disease
has spread beyond the pelvis. At this stage of disease, the cure rate is under 15%. This
is in contrast to the cure rate for early stage ovarian cancer, which can approach 90%.
Thus any approach that can allow diagnosis of ovarian cancer at an earlier curable
stage has the potential to have a marked impact on this devastating disease.



BODY
Statement of Work

Task #1 Assess the efficacy of novel LPA/PA lipid antibodies developed by our
group in capture and analysis of LPA/PA directly in serum and plasma using
SELDI-tof (months 1-24)

This specific aim was dependent on the production of anti-lipid antibodies and
identification of LPA and PA binding proteins for selective capture of these ligands from
serum and ascites. Recently, we have experienced difficulty in achieving selective lipid
binding by anti-lipid antibodies, scale-up production issues, and problems in obtaining
homogenous, healthy anti-lipid producing clones. These are problems of significant
general concern for developing a robust analytical method.

Thus, a modification of the initial aim would involve the broadening to include discovery
of additional lysophospholipid and lipid binding proteins that could be readily produced
as recombinant proteins and engineered to have particular useful lipid binding
characteristics. To this, end, we have employed our tethered LPA and PA reagents,
used earlier for ant lipid antibody elicitation, to make affinity resins for identification of
novel LPA binding proteins from fibroblasts and cancer cells. We plan to do the same
modification for LPC, PC, LPI, and P! lipids. To identify new lysophospholipid binding
proteins, a MS proteomics collaboration was established with Drs. J. Gettemans and J.
Vanderkerckhove at the University of Ghent (Belgium). This collaboration has the
benefit of discovering novel proteins in the LPA signaling pathway, which are likely to be
important as diagnostic markers in their own right, as well as being important reagents
for the proposed SELDI-MS capture method. The collaboration will be broadened with
other lysophospholipids as the reagents become available. The engineering of new
specificities by mutagenesis will be incorporated later in this program, following
identification of scaffold lipid-binding proteins and determination of their 3D structures.

Although, there has been difficulty in development of sufficient amounts of LPA/PA
antibodies for this aim, we have obtained a high affinity pan S1P antibody from Dr.
Roger Sabadinni at UCSD. This antibody binds all forms of S1P and demonstrates
efficacy in determining S1P levels using ELIZA. However, the ELIZA approach only
determines the total isoforms of S1P present and does not allow identification of the
S1P isoforms present. As described for the LPA antibodies, we are coupling the S1P
antibodies to the Seldi-tof matrices. We are also working with Dr. Sabadinni to produce
anti-LPA antibodies using the approaches developed for making anti-S1P antibodies.

Either the LPA binding protein or LPA antibody approaches are expected to be
successful. We will proceed with the tasks listed herein with the S1P antibodies.

1.1 Couple antibodies to Seldi-tof matrices (Months 1-4)




1.2Validate Seldi tof analysis with model lysophospholipids/phospholipids (Months 4-8)

1.3 Validate Seldi tof analysis with sera and plasma with known lipid composition
(Months 8-14)

1.4 Validate quantification of Seldi tof analysis with stable isotope labeled
lysophospholipid/lipid spiked into plasma and serum (Months 14-20)

1.5 Validate Seldi tof analysis with teaching and training set of serum and plasma
samples from ovarian cancer patients (Months 20-24)

Each of the subsequent steps in this Task will be dependent on the successful
completion of the preceding Task

Task #2 Determine whether non-specific matrices (hydrophobic C16, anionic
SAX2) can be used to directly determine phospholipid and lysophospholipid
levels using SELDI-tof

We have made significant process in this task. We have applied model
lysophospholipids to matrices and demonstrated an ability to detect the model
lysophospholipids in sera. We can readily detect 0.2nmol of LPA and other
lysophospholipid isoforms in a single spot using the SELDI matrix. Total LPA levels in
plasma, sera and ascites are between 100nM and 80uM. These are readily detectable
requiring a maximum of 2ml of plasma, and very low amounts of sera and ascites.
However, in order to detect isoforms of LPA that may be present at much lower
concentrations, we would need however as much as 7ml of plasma loaded on to the
current matrix. Thus we are now assessing different matrices and washing conditions.
Nevertheless, 7 ml of plasma could be obtained from patients for analysis. This will

require a pre purification step before loading onto the Seldi matrix. This is currently in
progress.

PA and LPC are present at much higher levels than LPA, allowing ready detection. LPI
and LPE are present at similar levels to LPA suggesting that the approach is on target

and will be able to detect the multiple different lipids present in plasma, sera and
ascites.

2.1Identify and obtain matrices for analysis (months 1-4)
2.2 Determine conditions for binding of lysophospholipids/phospholipids (months 5-8)
2.3 Determine conditions for washing of lysophospholipids/phospholipids (months 9-12)

2.4 Select affinity matrix for further analysis (month 12)

2.5Validate Seldi tof analysis with model lysophospholipids/phospholipids (Months 13-
16)




2.6 Validate Seldi tof analysis with sera and plasma with known lipid composition
(Months 16-20)

2.7 Validate quantification of Seldi tof analysis with stable isotope labeled
lysophopholipids/phospholipids spiked into plasma and serum (Months 21-24)

2.8Validate Seldi tof analysis with teaching and training set of serum and plasma
samples from ovarian cancer patients (Months 24-28)

Task #3 Develop additional anti-lysophospholipid/lipid antibodies and determine
their utility in analysis in Seldi-tof (1-36)

As indicated in the description for Task#1. We have already obtained S1P antibodies.
Further as indicated in Task#1, we are switching the emphasis of Task#3 to obtaining
high affinity lipid binding proteins using the tethered lysophospholipid moieties
developed for immunization of mice. To this, end, we have employed our tethered LPA
and PA reagents, used earlier for antilipid antibody elicitation, to make affinity resins for
identification of novel LPA binding proteins from fibroblasts and cancer cells. We plan to
do the same moadification for LPC, PC, LPI, and Pl lipids. To identify new
lysophospholipid binding proteins, a MS proteomics collaboration was established with
Drs. J. Gettemans and J. Vanderkerckhove at the University of Ghent (Belgium). This
collaboration has the benefit of discovering novel proteins in the LPA signaling pathway,
which are likely to be important as diagnostic markers in their own right, as well as
being important reagents for the proposed SELDI-MS capture method. The
collaboration will be broadened with other lysophospholipids as the reagents become
available. The engineering of new specificities by mutagenesis will be incorporated later
in this program, following identification of scaffold lipid-binding proteins and
determination of their 3D structures.

3.1 Develop immunogens for lysophosphatidyl choline/phosphatidylcholine (LPC/PC)
(months 1-4)

3.2 Immunize with LPC/PC immunogen (months 5-8)
3.2 Select antibodies to LPC/PC for coupling to matrices for Seldi tof (months 9-12)

3.3 Develop immunogens for lysophosphatidylinositol/phosphatidylinositol (LPI/P1)
(months 5-8)

3.4 Immunize with LPI/Pl immunogen (months 9-12)

3.5 Select antibodies for LPI/PI for coupling to matrices for Seldi tof (months 13-16)

3.6 Develop immunogens for sphingosine 1 phosphate/sphingosylphosphorylcholine
(S1P/SPC) (months 13-16)




3.7 Immunize with S1P/SPC immunogen (months 17-20)

3.8 Select antibodies to S1P/SPC for coupling to matrices for Seldi tof (months 21-24)

3.9 Analyze antibodies with Seldi-tof This process will follow the description in task 1.
The expertise gained in task 1 will facilitate the rapid completion of this step
(Months 24-36)




KEY RESEARCH ACCOMPLISHMENTS

1. Demonstrated that model lysophospholipids can be detected at concentrations
present in patients by SELDI tof

2. Obtained sufficient quantities of a high affinity S1P antibody for assessment by
SELDI tof

3. Initiated identification of high affinity lysophospholipid binding proteins.

REPORTABLE OUTCOMES

None

CONCLUSIONS

Overall, there has been significant progress in achieving the aims of the proposal. We
have obtained a high affinity S1P antibody and are linking it to appropriate matrices. We
have demonstrated that Seldi Tof has the ability to detect the amounts of
lysophospholipids present in plasma, sera and ascites. The proposed improvements in
the approach should increase the sensitivity of the assay to allow the detection of
different isoforms in plasma. Increased sensitivity is not required for sera or ascites.

REFERENCES

Mills G.B., and Moolenaar, WH. 2003 Emerging role of lysophosphatidic acid in cancer.
Nature Cancer Reviews 3:582-591

Goto, M., Tanyi, J., Lahad, J., Liu, S., Yu, S., Lapushin, R., Hasegawa, Y., Lu, Y., Trost,
R., Bevers, T., Jonasch, E., Aldape, K., Liu, J., James, R.A., Ferguson, C.G., Xu, Y.,
Prestwich, G.D., and Mills G.B., 2004 Lysophosphatidic acid production and action:
Validated targets in cancer. J. Cellular Biochemistry In Press.

APPENDICES

Mills G.B., and Moolenaar, WH. 2003 Emerging role of lysophosphatidic acid in cancer.
Nature Cancer Reviews 3:582-591




REVIEWS

PHOSPHOLIPID

A small molecule with one or
two fatty acyl chains, a glycerol
backbone, and a free or
derivatized phosphate.
Lysophospholipids only have a
single fatty acyl chain (see
figure 1).

SERUM

Fluid produced during blood
coagulation. Many growth
factors and mediators are
released by platelets during
clotting.

ECTO-ENZYME

An enzyme that is located on the
outside of the cell. Primarily
involved in metabolism of
molecules in the interstitial
space or bloodstream.
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IN CANCER

THE EMERGING ROLE OF
LYSOPHOSPHATIDIC ACID

Lysophosphatidic acid (LPA) is one of the simplest nat-
ural pHosPHoLIPIDs and, arguably, is also one of the most
interesting. It consists of a single fatty acyl chain, a glyc-
erol backbone and a free phosphate group, and unlike
most other phospholipids, it is also water soluble (FIG. 1).
Despite its simplicity, many structurally diverse forms of
LPA exist, so it has the potential to contain a remarkable
amount of informational content.

Although originally known for its rather unglam-
orous role as an intermediate in intracellular lipid
metabolism, LPA is now recognized as an extraceltu-
lar lipid mediator that evokes growth-factor-like
responses in almost every cell type, both normal and
transformed. The first indication that LPA was an
important bioactive lipid came several decades ago,
when it was found to induce smooth-muscle contrac-
tion, platelet aggregation and alterations in blood
pressure, but the significance and physiological
implications of those early findings remained
obscure until the late 1980s and early 1990s. At this
time, LPA was shown to have growth-factor-like
activities, to signal through specific cell-surface
receptors in a G-protein-dependent manner, and to
be a major active constituent of serum. A new era of
LPA research therefore began, and this has led to the
unravelling and biochemical characterization of
LPA’s multiple signalling pathways and the discovery
of new biological actions.

Gordon B. Mills* and Wouter H. Moolenaar?*

The bicactive phospholipid lysophosphatidic acid (LPA) stimulates cell proliferation, migration and
survival by acting on its cognate G-protein-coupled receptors. Aberrant LPA production, receptor
expression and signalling probably contribute to cancer initiation, progression and metastasis.
The recent identification of ecto-enzymes that mediate the production and degradation of LPA,
as well as the development of receptor-selective analogues, indicate mechanisms by which LPA
production or action could be modulated for cancer therapy.

As an inducer of cell proliferation, migration and
survival, LPA’s actions are concordant with many of the
‘hallmarks of cancer’!, indicating a role for LPA in the
initiation or progression of malignant disease. Indeed,
LPA levels are significantly increased in malignant effu-
sions, and its receptors are aberrantly expressed in
several human cancers. The most noteworthy recent
development underscoring the importance of LPA in
cancer, however, is the discovery that a previously enig-
matic ecro-eNzvME that is involved in tumour invasion,
neovascularization and metastasis — autotaxin (ATX)
—acts by producing LPA in the cellular microenviron-
ment, which indicates that LPA is a key contributor to
the metastatic cascade.

Biological actions of LPA

The list of cellular responses to LPA is remarkably
diverse (TABLE 1). Several of LPA’s actions are rapid —
for example, it affects morphological changes, motility,
chemotaxis, invasion, gap-junction closure and tight-
junction opening — and occur independently of new
protein synthesis. Others are long-term and secondary
to gene transcription, such as the stimulation of cell-
cycle progression, increased cell viability, wound heal-
ing, the production of endothelin and pro-angiogenic
factors (vascular endothelial growth factor (VEGF),
interleukin (IL)-6, IL-8 and GRO1) — which can act as
paracrine growth factors for malignant cells and can
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METALLOPROTEINASE
A class of metal-ion-requiring
extracellular proteases.

G-PROTEIN-COUPLED
RECEPTOR

A cell-surface receptor for small
molecules, peptides and lipids
that spans the plasma
membrane seven times and
signals via heterotrimeric

G proteins.

NECROSIS
A form of cell death that is
distinguished by autolysis.

ISCHAEMIA-REPERFUSION
INJURY

Cellular injury that occurs when
hypoxic tissue is reoxygenated. A
significant problem in stroke,
heart attacks and kidney injury.

MILDLY OXIDIZED LDL
Low-density lipoprotein (LDL)
is present in plasma. It is a large
spherical particle that is made up
of cholesterol, cholesteryl esters,
phospholipids and a single
protein that organizes the
particle. Under oxidative stress,
LDLs become modified,
resulting in alterations in lipid
composition.

ATHEROSCLEROSIS

Narrowing of the blood vessels
due to deposition of ‘plaque’
following injury. It is a frequent
cause of cardiovascular disease,
including heart attacks and
stroke.

Summary

. Lysophosphatidlc acid (LPA) is a serum phospholipid with growth-factor-like activities for many cell types. It acts
through specific G-protein-coupled receptors on the cell surface.

* LPA stimulates cell proliferation, migration and survival. In addition, LPA induces cellular shape changes, increases
. endothelial permeability and inhibits gap-junctional communication between adjacent cells. LPA promotes wound
healing in vivo and suppresses intestinal damage following irradiation.

« LPA receptors couple to multiple signalling pathways that are now being clarified. These pathways include those -
initiated by the small GTPases RAS, RHO and RAC, with RAS controlling cell-cycle progression and RHO/RAC
signalling having a dominant role in (tumour) cefl migration and invasion,

+ Significant levels (>1 uM) of bioactive LPA are detected in various body fluids, including serum (but not plasma),
saliva, follicular fluid and malignant effuslons. The mechanisms by which bioactive LPA is produced were unknown

until recently,

* Recent evidence shows that LPAis produeed extrace!lulady from lysophosplntidylcholine by ‘aatotaxin’ )
(ATX/1ysoPLD). ATX/lysoPLD is a ubiquitous exo-phosphodiesterase that was originally identified as an autocrine
motility factor for melanoma cells and is implicated in tumour progression. Through local production of bioactive
LPA, ATX/lysoPLD might support an invasive nﬁcroenvimnment for tumour cells and therefore contribute to the

metastatic cascade,

*Both LPA receptors and ATX/lysoPLD are aberrantly expressed in several cancers. -
* The use of inhibitory drugs directed against LPA receptoxs and/or ATX/lysoPLD could be effective in suppressing

tumour metastasls

also alter the in vivo environment by increasing neovas-
cularization — and the production or activation of
proteases such as urokinase plasminogen activator
(uPA), METALLOPROTEINASES (suich as MMP-2) and the
metalloprotease-disintegrin tumour necrosis factor-o.
converting enzyme (TACE)> ™,

Phosphatidic
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acid (PA) (LPC)
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S §H2CHN(CHa)a
Q

;
0=pP-0-

0=-?~<.)“ O=¥:—>-0'

[»] 8} M

R . o Sn-180-2 ‘:)
O= g; G S By

<. <., *
SSa S k2
58 S <
S > <
> > <
> > <

AN
\

I Phosphate group
Bl Clycero! backbone
S Fatty acyl chains

Figure 1 | LPA metabolic pathways. LPA can be produced
by at least two distinct enzymatic mechanisms: a | hydrolysis of
phosphatidic acid (PA) by soluble phospholipase A2 (sPLA2),
which cleaves the fatty acyl chain at the sn-2 position, or
hydrolysis by phosphalipase A1 (PLA1), which cleaves the fatty
acyl chain at the sn-1 position of the glycerol backbone;

b | or hydrolysis of lysophosphatidylcholine (LPC) by ATX/lyso
PLD, which liberates the hydrophilic headgroup (choline). LPC
is produced by the action of PLA1 or PLA2 on membrane
phosphatidylcholine.

In addition to transcriptional activation of growth
factors, one mechanism by which LPA could indirectly
regulate cellular function is through a c-proTEIN-cCOUPLED
ReCEPTOR (GPCR)-regulated transmembrane metallo-
proteinase cleaving the precursor heparin-binding
epidermal growth factor (HB-EGF) or amphiregulin
protein at the cell surface, thereby allowing ‘transacti-
vation’ of the EGF receptor in a classic autocrine
manner %, Human EGF-receptor (HER) family
members are frequently overexpressed in cancer.
Indeed, LPA induces tyrosine phosphorylation of
many intracellular proteins, including members of the
HER family*!63%-33, which is compatible with the idea
of LPA inducing a number of cellular responses
through the release and action of ligands for the HER
family and other tyrosine-kinase-linked receptors.

Although in most circumstances LPA seems to
increase cell viability, LPA can induce necrosts and
apoptosis in hippocampal neurons and neuronal PC12
cells®*, Purthermore, renal 1SCHAEMIA-REPERFUSION INJURY
seems to be exacerbated by activation of LPA receptors,
indicating that the effect of LPA on cellular viability
in vivo could be cell or context dependent®.

LPA also exerts diverse vascular effects: it alters
attachment of monocytes to vascular endothelial cells,
it increases endothelial permeability (decreased barrier
function), and it alters the contractility, proliferation
and differentiation of vascular smooth-muscle cells,
potentially contributing to its effects on blood pres-
sure'>17¥7-4_ These observations, together with the find-
ing that LPA is an active ingredient of miLory oxipizep
LOW DENSITY LIPOPROTEIN (LDL)#~*, indicate that LPA might
contribute to ATHEROSCLEROSIS.

Aswell asits role as an extracellular messenger, LPA
has a well-established ‘house-keeping’ role inside the
cell, namely as a precursor in the biosynthesis of more
complex phospholipids. In addition, intracellular LPA
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Table 1| Main biological activities of LPA

Effect Cell type/remarks Maljor signalling pathway/effector
Cell profiferation Many nomal and transformed cell types G-RAS-ERK1/2
Cell survival G-PI3K-AKT(PKB)
Cell migration (random Diverse nommal and transformed cell types G -PIBK-TIAM1-RAC (together with
and directed) RHOA and CDC42 pathways)
Tumour-cell invasion in vitro Hepatoma, T lymphoma, carcinoma cells
Wound healing in vivo Skin, intestinal epithefium
Morphological changes Cell rounding, neurite retraction G,,,;~RHO-GEF-RHOA
Cell spreading, lamellipodia protrusion G-P13K-TIAM1-RAC
Inhibition/reversal of differentiation  Neuroblastoma cells (suppression of neurite G, ,,,,-RHO-GEF-RHOA
Xusl;%gyvfe? (reversal of stellation) ERK and p38 MAPKs

Vascular smooth-muscle cells (conversion
to fibroblast morphology; loss of contractility)

Contraction Smooth-muscle cells, myofibroblasts G,,;~-RHO-GEF-RHOA
Increased endothelial permeability Micro- and macrovascular endothelial cells  G,,,,,~RHO-GEF-RHOA
Inhibition of gap-junctional Fibroblasts, hepatoma cells, epithelial cells G-PLC

communication

ERK, extracellular signal-regulated kinase; PI3K, phosphatidylinositol 3-kinase; MAPK, mitogen-activated protein kinase; PLC,

phospholipase C.

can, at least in vitro, serve as a substrate for ‘endophilin’
— acytosolic protein that can convert LPA into phos-
phatidic acid by addition of an acyl chain —and so
could influence membrane curvature and
endocytosis*. Intriguingly, LPA has been reported to
function as a high-affinity ligand for the transcription-
factor perixosome proliferating activating receptor-y
(PPARY)*Y. Exogenous LPA can induce PPARY-medi-
ated gene transcription, which supports the idea that
this is a physiological role*’. PPARY normally binds
fatty-acid derivatives and regulates genes that are
involved in energy metabolism, cell differentiation,
apoptosis and inflammation. As such, PPARy has a cen-
tral role in abirocenesis and insulin sensitization, but it
can also affect cell proliferation and differentiation in
various malignancies. It will be necessary to determine
how a charged phospholipid such as LPA would cross
the plasma membrane intact (without degradation)
and in sufficient quantity to activate a nuclear tran-
scription factor. The relative contribution, if any,
of PPARY activation to the physiological activities of
extracellular LPA remains to be established.

G-protein signalling

The great variety of cellular and biological actions of LPA
is explained by the fact that LPA receptors can couple to
at least three distinct G proteins (G, G,and G,,,,,),
which, in turn, feed into multipfe effector sys-
tems™!1323345-54 (FIG. 2). LPA activates G, and thereby
stimulates prospHoLease C (PLC), with subsequent phos-

ADIPOGENESIS phatidylinositol-bisphosphate hydrolysis and generation
Development of fat cells of multiple second messengers leading to protein kinase
(adipocytes) and formation of Cactivation and changes in cytosolic calcium? LPA also
lipid bodies in adipocytes. activates G, which leads to at least three distinct sig-
PHOSPHOLIPASE n.alhng routes: inhibition of ader‘xylyl cxclase w.1th inhibi-
An enzyme that cleaves tion of cyclic AMP accumulation; stimulation of the
phospholipids. mitogenic RAS-MAPK (mitogen-activated protein

kinase) cascade; and activation of phosphatidylinositol
3-kinase (PI3K), leading to activation of the guanosine
diphosphate/guanosine triphosphate (GDP/GTP)
exchange factor TIAM1 and the downstream RAC
GTPase, as well as to activation of the AKT/PKB anti-
apoptotic pathway #5155, Finally, LPA activates G, ,,
leading to activation of the small GTPase RHOA, which
drives cytoskeletal contraction and cell rounding 55,
So, LPA not only signals via classic second messengers
such as calcium, diacylglycerol and cAMP, but it also
activates RAS- and RHO-family GTPases — the master
switches that control cell proliferation, migration and
morphogenesis. The RAS- and RHO-GTPases cycle
between GDP- and GTP-bound states, with GTP bind-
ing being promoted by specific GDP/GTP exchange
factors (GEFs); the GTP-bound forms can interact with
various downstream effectors (such as protein kinases
and scaffold proteins) and thereby alter cell behaviour.
By activating G, LPA triggers the RAS-mediated
MAPK cascade and thereby promotes cell-cycle pro-
gression and cell survival>**-%3, LPA-induced RAS activa-
tion presumably involves the RAS-specific GEF, SOS,
and intermediate protein-tyrosine-kinase activity, but
precisely how LPA activates RAS is still a matter of
debate?2, In addition to activating RAS, LPA activates
the RAC GTPase — a key regulator of the actin
cytoskeleton, cell morphology and motility. LPA-
induced RAC activation proceeds via a G.-mediated
pathway that involves enhanced PI3K activity and the
RAC-specific GEF, TIAM (REE 54). Interestingly, Tiam1-
knockout mice are resistant to skin carcinogenesis, indi-
cating that LPA-induced Tiam1 activation could havea
role in tumour initiation”. Furthermore, LPA activates
the RHOA GTPase via G, , and one or more specific
RHO-GEFs, thereby inducing cytoskeletal contraction
and cell rounding'**%, So, the RHO-family GTPases
RHOA and RAC are activated through two separate

584 | AUGUST 2003 [ VOLUME 3

www.nature.com/reviews/cancer

© 2003 Nature Publishing Group




REVIEWS

SPHINGOSINE-1-PHOSPHATE

A small lipid that is similar to
LPA, but with asphingosine
rather than a glycero! backbone.

Figure 2 | Major LPA signalling pathways. LPA signals
through its own G-protein-coupled receptors via at least three
distinct classes of hetrotrimeric G proteins — Gq, GandG
—~ leading to activation of multiple downstream effector
pathways. Among the main LPA-induced signalling pathways
are: Gq {or/and G)) -mediated activation of phospholipase C
(PLC), which leads to the hydrolysis of phosphatidytinositol-
bisphosphate {PIP,), with consequent calcium mobilization and
protein kinase C (PKC) activation; G-mediated activation of the
RAS-ERK pathway, leading to cell proliferation; G-mediated
activation of the PI3K~AKT (also known as PKB) ‘survival’
pathway, which suppresses apoptosis; and activation of the
RHO and RAC GTPases via specific exchange factors, RHO-
GEF and TIAM1, which leads to cytoskeletal remodeling
(contraction and spreading), shape changes and cell migration.

213

G-protein pathways — G, .~RHO-GEF and
G-PI3K-TIAMI (REFS. 12,49,50,54). Their downstream
effectors drive cell migration and invasion, but also
impact on cell-cycle progression®*s.

Finally, LPA induces cell-survival signalling through
two pathways — via PI3K and AKT and through activa-
tion of the RAS/extracellular-signal-regulated kinase
(ERK) pathway 3,

LPA receptors

Four mammalian cell-surface LPA receptors have been
identified so far. The best known are LPA1, LPA2 and
LPA3, which are all members of the so-called ‘endothe-
ljal differentiation gene’ (EDG) family of GPCRsand
were formerly called EDG2, EDG4 and EDG?7, respec-
tively>#-¢2, Five additional members of the EDG-recep-
tor subfamily encode related GPCRs that are specific for
the bioactive lysophospholipid sPHINGOSINE-1-PHOSPHATE
(S1P)%. Recently, a fourth LPA receptor was identified
(LPA4/GPR23/P2Y9), which shares no significant iden-
tity with the other LPA receptors®. LPA4 is more closely
related to the purinergic (P2Y) GPCR family, yet does
not bind nucleotides.

LPAL1 is the most widely expressed receptor, with high
mRNA levels in the colon, small intestine, placenta, brain
and heart,and more modest expression in the pancreas,
ovary and prostate®. Particularly high levels of LPA1 are
present in the cerebral cortical ventricular zone during
neurogenesis and in oligodendrocytes and Schwann cells
in the adult. LPA2 and LPA3 have a more restricted dis-
tribution pattern compared with LPA1 (REFS. 58-62,65-66).
Intriguingly, both LPA2 and LPA3 are aberrantly
expressed in cancer cells, particularly in ovarian cancer
cells, indicating a potential role in the pathophysiology of
cancer'#%-70, 1 PA4 seems to be expressed at very low lev-
els in most human tissues, altthough significant levels are
found in the ovary®,

Genetic studies with Lpa-receptor-null mice have
shown the importance of LPA-receptor function for nor-
mal development. Lpal-null mice show a failure to
suckle, potentially due to decreased olfaction, leading to
weight loss and partial neonatal mortality”. Cell migra-
tion, rounding and proliferation in response to LPA is
decreased in embryonic fibroblasts from Lpal-null mice,
but is not absent, consistent with redundant signalling
from LPA receptors. Lpa2-null mice show no obvious
phenotypic aberrations”™ and, intriguingly, compound
Lpal/Lpa2-null mice do not show a phenotype different
from that of Lpal-null mice, except for a modest increase
in frontal haematomas™. So, normal physiological func-
tions either do not require LPA-receptor activation, or
LPA3 and LPA4 (or other as yet unidentified LPA recep-
tors) function redundantly. This also indicates that the
main functions of the LPA receptors could become evi-
dent under pathophysiological conditions, such as
wounding, inflammation or tumorigenesis, rather than
during normal development. This further indicates that
therapeutic modalities aimed at altering the function of
specific LPA receptors might be well tolerated.

Nearly all mammalian cells, tissues and organs (except
the liver) co-express several LPA-receptor subtypes of the
EDG family, which strongly indicates that LPA receptors
signal in a cooperative manner. However, which LPA
receptor subtype couples to which G-protein-effector
route(s) in a given cellular context is still not known.
Heterologous expression studies have shown that each
individual LPA receptor can mediate PLC activation,
inhibition of cAMP accumulation and activation of the
MAPK pathway, but there is considerable variation in the
efficacy and potency that particular isoforms of LPA have
for receptors, and the ability of receptors to link to partic-
ular downstream events. Indeed, in most systems LPA2
shows a higher affinity for LPA than for the other family
members and couples more efficiently to production of
neovascularizing factors (REE 25 and E. Goetzl, personal
communication). Similarly, LPA1 seems to be the main
regulator of cellular motility>773,

Although a number of selective agonists and antago-
nists of the LPA receptors have been identifieds2¢!627¢81,
their susceptibility to hydrolysis or the requirement for
high concentrations of these inhibitors and lack of com-
plete receptor specificity have hindered their use as ther-
apeutic agents or probes of LPA-receptor function. The
development of more selective inhibitors that cannot be
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Figure 3 | Regulation of bioactive LPA. ATX/lysoPLD is
synthesized as a large membrane-spanning glycoprotein that
undergoes membrane-proximal proteolytic cleavage (not
necessarily at the plasma membrane) to yield a secreted
enzyme. Soluble ATX/lysoPLD hydrolyses LPC {and other
tysophospholipids), which is abundantly present in the
circulation, to generate LPA. Newly produced LPA acts on its
own G-protein-coupled receptors to evoke its biological effects,
including RAS-mediated cell proliferation and RHO/RAC-
regulated cel migration. Excess LPA is converted into mono-
acyiglycerol (MAG) by membrane-bound lipid phosphatases
(LPPs) that remove the phosphate group from LPA.

hydrolysed is eagerly awaited. Nevertheless, the develop-
ment of these molecules bodes well for the eventual
ability to selectively target LPA receptors and functions.

The structural basis of receptor selectivity of LPA is
beginning to be elucidated®¢'627+-82, Molecular mod-
elling could soon contribute to the development of
receptor-selective agonists and antagonists that will
both elucidate receptor function and serve as thera-
peutic mediators. For example, a single amino acid
glutamine/glutamate exchange in transmembrane
helix 3 between LPA1 and the S1P receptor S1P1is
sufficient to confer the ability to respond to the het-
erologous ligand”, indicating that the binding speci-
ficity is probably conferred by modest structural
changes in the receptors.

A number of important questions remain unan-
swered. For example, what is the nature of the signalling
pathways that are activated by each individual LPA recep-
tor, what are the downstream signal transducers and do
distinct LPA receptors signal in a cooperative manner?
Are the effects of activation of specific LPA receptors con-
text dependent and altered by the particular intracellular
machinery in the responding cell or by the cellular envi-
ronment? How the diverse biochemical events activated
by LPA are integrated into functional outcomes has
remained particularly elusive. Future microarray studies,
using specific LPA-receptor antagonists and agonists or
cells in which LPA-receptor expression is selectively

altered, might shed light on the unique gene-expression
pattern that is induced by each LPA-receptor subtype ina
given cellular context.

Extracellular metabolism of LPA

Physiologically significant concentrations of LPA are
found not only in serum, but also in malignant effu-
sions, saliva, follicular fluid, seminal plasma and in
mildly oxidized LDL. In serum, and presumably in
other body fluids, the main LPA-binding proteins/car-
riers are albumin and gelsolin®-%. One of the long-
standing challenges has been to understand how
bioactive LPA is produced and its level regulated in the
cellular microenvironment. Emerging evidence indi-
cates that bioactive LPA is generated extracellularly,
rather than inside the cell, with subsequent secretion
or release®™ ¥, Indeed, a series of secreted and trans-
membrane ecto-enzymes are crucial for the produc-
tion and metabolism of extracellular LPA%3 (FIGS 1,3).
Steady-state pLasma LPA levels are normally low (less
than 100 nM 36879495, representing the equilibrium
between production, degradation and clearance.
Unidentified factors in plasma and seminal fluid seem
to inhibit LPA activity?®%, So, the effective levels of
bioactive LPA in plasma are below those able to induce
full activation of LPA receptors (usually observed at
100-200 nM LPA). Nevertheless, plasma contains both
the enzymes and the lipid substrates that are required
for LPA production. Incubation of plasma at 37°C, for
example, results in an increase in LPA levels to those
necessary to activate LPA receptors®, The mechanisms
that restrict LPA production in plasma, as well as the
triggers that increase LPA production during patho-
physiological states, remain unclear. LPA is probably
produced locally — following injury or stress such as
wound healing — at the interface between cells and
the interstitial fluid, and then migrates to plasma for
degradation or clearance.

Whereas plasma levels of LPA are low, its concentra-
tion in serum is much higher at several micrometers
(uM). LPA is produced following platelet activation®’,
but the amount of LPA released is insufficient to
explain LPA levels in serum®#’, Furthermore, the fatty
acyl chain composition of LPA produced by
platelets®? differs from that in plasma or serum, which
contains higher levels of LPA enriched with unsatu-
rated fatty acids®”. This indicates that different processes
regulate production and degradation of LPA by
platelets and in plasma, or following activation of the
coagulation cascade.

LPA production

LPA can be produced by the sequential removal of a fatty
acyl chain from phosphatidic acid by phospholipase A1
(PLA1) or phospholipase A2 (PLA2), or by the removal
of choline from membrane phosphatidylcholine by
ATX/lysoPLD (lyso phospholipase D)247, PLA1 releases
fatty acids from the sn-1 position of membrane phos-
pholipids (FIG. 1) that, when converted to LPA, produce
sn-2 and polyunsaturated LPA isoforms that are selec-
tively active on the LPA3 receptor®'®!, Type-II secretory
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Fluid that accumulates in the
peritoneal cavity of ovarian
cancer patients and occasionally
in patients with other diseases,
such as liver failure.

Box 1| Properties of ATX/lysoPLD

* Originally discovered as an autocrine motility factor
(125 kDa) that is secreted by human melanoma cells
and subsequently characterized as a transmembrane
ecto-nucleotide phosphodiesterase (also termed NPP2).

* The soluble form is identical to plasma lysoPLD, which
generates LPA from more complex lysophospholipids
such as lysophosphatidylcholine (LPC).

» Widely expressed (highest expression in the brain,
lung, ovary, kidney, intestine and testis).

 Upregulated in several cancers (including non-
small-cell lung carcinoma, renal-cell carcinoma,
mammary carcinoma, neuroblastoma and
hepatocellular carcinoma).

» Upregulated by peptide growth factors {such as bFGF
and BMP2), retinoic acid and WNT signalling (in
mammary epithelial cells).

» Stimulates tumour aggressiveness, metastasis and
angiogenesis in nude mice.

» ATX/lysoPLD-induced cell motility and proliferation
are mediated by newly produced LPA.

phospholipase A2 (sPLA2), which cleaves fatty acyl
chains from the sn-2 site (FIG. 1), has a limited ability to
hydrolyse lipids in intact cell membranes, potentially
contributing to the low levels of LPA in plasma. sPLA2
selectively hydrolyses lipids that are present in damaged
membranes, membranes of activated cells, or microvesi-
cles such as those released during apoptosis or that are
produced by cancer cells®®. Microvesicle numbers are
particularly high in malignant fluids such as ascites,
potentially contributing to the aberrant production of
LPA in cancer patients®%9.115-117.

The recent discovery that LPA is generated from
lysophospholipids, particularly from lysophosphatidyl-
choline, by the previously enigmatic ATX/lysoPLD ecto-
phosphodiesterase®®! (8ox 1; F1G.3)— implicated in cell
motility and tumour progression!®%2— has shed light
on how LPA is produced in the extracellular milieu. It
has also provided impetus into studies of the role of
ATX/lysoPLD and LPA in the metastatic cascade.

ATX was originally identified as an ‘autocrine motil-
ity factor’ secreted by melanoma cells'® and was subse-
quently found to belong to the family of ecto-nucleotide
phosphodiesterases (NPPs), which are capable of
hydrolysing phosphodiester and pyrophosphate bonds
that are typically found in ATP and ADP¥!, Therefore,
ATX was previously thought to act via nucleotide
(purinergic) receptor signalling. However, new work
convincingly shows that ATX has lysoPLD activity and
that the biological effects of ATX/lysoPLD can be attrib-
uted to the production of LPA and, potentially,
S1Po003-15 (£1G, 3). Unexpectedly, it seems that ATX isa
unique lysoPLD, in that its family members (NPP1 and
NPP3) lack a similar phospholipase function'®,

ATX/lysoPLD is a transmembrane protein with a very
short amino-terminal region, a single transmembrane
domain, two cysteine-rich somatomedin-B-like domains

— possibly involved in homodimerization —and a large
catalytic ecto-domain'®, Soluble ATX/lysoPLD is derived
from the membrane-bound form by proteolytic cleavage,
but details of ATX/lysoPLD biosynthesis and processing
are still largely unknown. ATX/lysoPLD is widely
expressed, with the highest mRNA levels in the brain,
ovary, lung, intestine and kidney, and it is upregulated by
certain peptide growth factors'%!%”, Targeted deletion and
transgenic overexpression of ATX/lysoPLD in specific
tissues should provide important insights into its
(patho)physiological functions.

Outstanding questions concern the regulation of
ATX/lysoPLD expression, activity and processing.
Where is ATX/lysoPLD localized in cells? How and
where is its proteolytic cleavage regulated? Does full-
length ATX/lysoPLD exist on the cell surface? Is full-
length ATX/lysoPLD catalytically active? What is the
source of ATX/lysoPLD in plasma? How does ATX/
lysoPLD participate in the development of patho-
physiological states? Finally, how is its lipid sub-
strate(s) locally produced? With regard to this last
question, the main physiological substrate for ATX/
lysoPLD is lysophosphatidylcholine (LPC) (FIG. 1). LPC
is secreted by the liver and is abundantly present in
plasma, where it is predominantly bound to albumin
and, to a lesser extent, lipoproteins!'®, LPC is also
found in the supernatant of cultured cells, presumably
as a constituent of microvesicles that have been shed
from the plasma membrane®?. Interestingly, micro-
vesicle shedding has been implicated in the metastatic
cascade, with malignant body fluids (for example,
ascites) containing large amounts of microvesicles™%,
So, ATX/lysoPLD could convert microvesicle-associated
LPCinto bioactive LPA, which would provide an expla-
nation for the link between microvesicle shedding
and metastasis.

The original identification of secreted ATX/lysoPLD
as a tumour-motility factor indicates a link between
ATX/lysoPLD and cancer, and strengthens the evidence
for a role for LPA in the initiation and progression of
cancer. Indeed, ATX/lysoPLD mRNA is upregulated in
several human cancers, particularly melanoma, renal-
cell carcinoma and glioma, and studies in nude mice
have shown that ATX/lysoPLD enhances tumour
aggressiveness'®®, Specifically, Atx-transfected, Ras-
transformed NIH-3T3 cells are more invasive, tumori-
genicand metastaticthan Ras-transformed control cells.
Further, the metastatic capability of breast cancer cells
correlates with their ATX/lysoPLD levels'!®, These
observations are compatible with the main activity of
ATX/lysoPLD being due to production of LPA and its
effects on protease production, cell motility, chemotaxis
and invasion. Furthermore, ATX/lysoPLD can promote
angiogenesis both in vitro and in vivo'®,

So, by generating LPA (and possibly other bioactive
lysophospholipids), ATX/lysoPLD could contributeto
tumour progression by providing an invasive and vas-
culogenic microenvironment for tumour cells. As a
secreted or cell-surface enzyme, ATX/lysoPLD is a
highly attractive pharmacological target for therapy and
might be of diagnostic value.
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(Lipid phosphate
phosphohydrolases). Cleave
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‘GAS CHROMATOGRAPHY
A method that is used to
separate and identify small
molecules.

LPA inactivation

Production of bioactive LPA by ATX/lysoPLD is only
half of the story: obviously, LPA accumulation must be
counterbalanced by inactivation mechanisms. One pos-
sibility is that ATX/lysoPLD activity is tightly controlled
by as-yet-unidentified cofactors or binding proteins. An
alternative or additional mechanism is provided by inac-
tivation of LPA itself. Indeed, exogenous LPA is rapidly
dephosphorylated to yield biologically inactive monoa-
cylglycerol. Recent advances have revealed that a family
of lipid phosphate phosphohydrolases wepg, comprising
at least four members, is responsible for the dephos-
phorylation of LPA and can therefore attenuate LPA
signalling 7895, The LPPs are integral membrane
ecto-enzymes, with six putative transmembrane
domains®'. Overexpression of LPPs in ovarian cancer
cells decreases colony formation, increases apoptosis
and decreases tumour growth in vitro and in vivo®.
Interestingly, LPP activity can be increased by
gonadotropin-releasing hormone analogues through
recruitment of LPPs to the cell membrane®. So, LPA
signal duration and strength is likely to depend, at least
in part, on the expression level of LPPs, which are
decreased in ovarian cancer'!!, and their membrane
localization relative to the LPA receptors. Pharma-
cological manipulation to increase LPP activity is an
intriguing approach for cancer therapy.

LPA in the pathophysiology of cancer

The first indication that LPA could contribute to tumori-
genesis came from studies showing that LPA increases
motility and invasiveness of cells**?22%, Studies from
our groups, combined with the observation that
ATX/lysoPLD mediates its effects through the produc-
tion of LPA, have implicated LPA in the pathophysiology
of ovarian cancer, and several studies have indicated a
role for LPA in the initiation or progression of prostate,
breast, melanoma, head and neck, bowel, thyroid and
Other w_ncers513-2552.66—7“.73‘99.101—104.109,1 11,1 12‘

Ascites fluid in ovarian cancer patients provides a
window on the cellular environment of the tumour, as
well as on growth factors that are produced by tumour
cells. Ascites fluid is a potent mitogen for ovarian can-
cer cells in vitro and in vivo''>-1'"4, A significant portion
of this activity is mediated by LPA, which is present in
ascites fluid at between 1 and 80 uM, exceeding levels
required to optimally activate LPA receptors™#>!1117,
LPA is not produced at significant levels by normal
ovarian epithelial cells, whereas ovarian cancer cells
produce increased levels of LPA®*!8, Prostate cancer
cells also produce high levels of LPA and respond to
LPA in an autocrine loop!'2. Surprisingly, LPA itself, as
well as phorbol esters, are sufficient to increase produc-
tion of LPA by some ovarian cancer cell lines, indicat-
ing the presence of autocrine networks®!!%, Ovarian
cancer cells do not express unusually high levels of
ATX/lysoPLD mRNA; however, ATX/lysoPLD protein
levels are increased in most ovarian cancers.
Furthermore, as ovarian cancer patients present with
large tumour masses, low-level production of
ATX/lysoPLD or LPA by ovarian cancer cells might be

sufficient to result in increased levels of LPA in ascites.
Indeed, ATX/lysoPLD activity is increased in most
ovarian cancer ascites. By contrast, LPPI mRNA levels
are consistently decreased in ovarian cancer samples''®,
indicating that LPA inactivation might be decreased,
which would also contribute to the increased levels of
LPA in ascites.

LPA2 and LPA3 are overexpressed by a significant
fraction of ovarian cancer cells, contributing to the
responsiveness of ovarian cancer cells to LPA%°, LPA4
levels are particularly high in normal ovary®, poten-
tially contributing to the effects of LPA on ovarian can-
cer cells. Colorectal carcinoma cell lines show significant
expression of LPAI mRNA and respond to LPA by cell
migration and production of angiogenic factors™. It has
been suggested that LPA2 overexpression has a role in
the pathogenesis of thyroid cancer”. LPA3 was origi-
nally cloned from prostate cancer cells, concordant with
the ability of LPA to induce autocrine proliferation of
prostate cancer cells®!'2,

Lysophospholipids as tumour markers

The increased levels of LPA and vesicles in ascites from
ovarian cancer patients indicated that, if LPA migrates
from the peritoneal cavity into the circulation, it could
be an early diagnostic marker, a prognostic indicator
or an indicator of response to therapy. LPA levels are
consistently higher in ascites samples than in matched
plasma samples, which is compatible with this hypoth-
esis®. Preliminary studies using purification followed
by cas curomatocrapHY (GC) indicated that levels of
LPA or particular isoforms of LPA were increased in
the plasma of approximately 90% of ovarian cancer
patients®!'%, LPA levels were not increased in samples
from patients with breast cancer or leukaemia, but
were increased in patients with myeloma, endometrial
cancer and cervical cancer, as well as patients on renal
dialysis®!1%-12!_ A similar approach showed aberrations
in particular LPC isoforms in plasma from ovarian
cancer patients'??, More recent studies using a mass-
spectrometry approach failed to detect increased levels
of LPA in plasma from ovarian cancer patients or alter-
ations in levels of particular isoforms®, although even
this finding is controversial'>'%. An analysis of
ATX/lysoPLD activity failed to detect aberrant activity
in blood samples from ovarian cancer patients'”. The
discrepancy between the results might represent differ-
ences in the technologies used or in the way in which
the samples were collected or handled. It therefore
remains possible that assessment of particular iso-
forms of the many different lysophospholipids present
in plasma and ascites might provide diagnostic or
prognostic information. Indeed, based on different
backbones, fatty-acyl-chain linkage, location, length
and saturation, and phosphate modification, several
hundred different lysophospholipids could be present
in plasma and ascites.

Prospects for the future
Almost half of all drugs in current use target members
of the GPCR family, making LPA receptors attractive
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targets for therapeutic development. As described
above, LPA receptors are broadly expressed, including in
the brain and vasculature, which has led to concerns
about toxicity of inhibitors of LPA production or action.
However, as compound Lpal/Lpa2-null mice are
viable and do not show marked functional aberra-
tions in adult mice, it might be possible to target
specific LPA receptors in tumour cells without undue
systemic toxicity. LPA3 is particularly appealing as its
expression is restricted and it is aberrantly expressed
in multiple cancer lineages. Structure—function analy-
sis, molecular modelling and studies of receptor struc-
ture are already contributing to the development of
novel receptor-selective agonists and antagonists.
However, as yet, therapeutically relevant LPA agonists
and antagonists have not been developed. In addition
to inhibition of receptor activation, LPA production
and degradation could prove attractive targets for

therapy. Both ATX/lysoPLD and LPPs are extracellular
enzymes and are therefore readily available targets for
therapy. In addition to its direct actions on tumour
cells, LPA also prevents intestinal damage (epithelial
apoptosis) in irradiated or chemotherapy-treated
mice %, The latter finding indicates that diets that are
rich in LPA or therapeutic modulation of LPA activity
could be effective in reducing intestinal damage in
patients undergoing cancer therapy. The development
of selective LPA-receptor agonists and antagonists, as
well as the identification of the pathways regulating
LPA production and action, indicates that therapeutic
approaches targeting the LPA cascade might be a realis-
tic addition to the treatment of malignant disease in the
near future. We look forward to the future, when the
role of LPA and related lysophospholipids in the physi-
ology, pathophysiology and management of cancer and
other diseases is elucidated.
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